
MASANAS AMER, Jan TraPe 4C3 2022-2023

Les travaux personnels du Lycée Ermesinde Mersch

 The Anatomy of a Computer

How computers work, explained with Computer Logic

Jan Masanas Amer

Classe : 4CLA3

Tuteur : Ken Vallender

Avril 2023

MASANAS AMER, Jan TraPe 4C3 2022-2023

MASANAS AMER, Jan TraPe 4C3 2022-2023

Table of contents

Table of contents ... 3

Introduction .. 4

RAM (Random Access Memory) ... 5

ADDRESS DECODER ... 6

MEMORY CELL ARRAY, DATA BUFFER & OUTPUT BUFFER 8

CPU .. 11

OPCODE .. 11

CONTROL UNIT (CU) .. 12

ARITHMETIC AND LOGIC UNIT (ALU) ... 12

GPU... 14

Explanations of specific circuits .. 19

Data Storage... 19

SR-Latch: .. 19

D-Flip Flop:..20

Binary counter .. 21

Frequency Divider .. 22

Arithmetic Operations .. 23

Adder ... 23

Subtracter (Specialized) ... 25

Subtractor (Generalized) .. 28

Multiplier...30

Sources: .. 32

MASANAS AMER, Jan TraPe 4C3 2022-2023

The Anatomy of a Computer

Introduction

Computers have come a long way since their inception, and today they play an

integral role in virtually every aspect of our lives. From social media and online

shopping to complex scientific simulations and medical diagnoses, computers

are the engines that drive our modern world. Yet, despite their ubiquitous

presence, many of us still have only a limited understanding of how they work.

What lies beneath the glossy exterior of our laptops and smartphones? How do

they process the vast amounts of information we feed them every day, and what

makes them capable of performing such complex tasks with seemingly effortless

ease? In this TraPe, we will embark on a journey of discovery, exploring the inner

workings of a computer on the binary level. We will examine the basic building

blocks of a computer system, including the core Processors (CPU/GPU),

memory (RAM), and the ways they communicate with each other.

We will delve into the intricacies of binary, the language of computers, and

understand how it is used to transmit and process information. We will also look

at some concrete diagrams and circuits, to fully understand how it works.

This deep dive into the workings of a computer is intended for anyone who wants

to gain a better understanding of how these machines operate. The following

explanations assume you have a basic understanding of how computer logic

works (logic gates). Whether you are a student, a software developer, or simply

someone who is curious about the technology that powers our lives, this project

will provide you with a comprehensive and in-depth look at the mechanisms that

make computers run.

This TraPe can be read in no particular order, and I highly recommend you read

the explanations to each individual circuit, when they are mentioned in the TraPe,

in the chapter titled Explanations of specific circuits.

MASANAS AMER, Jan TraPe 4C3 2022-2023

RAM (Random Access Memory)

RAM, also known as Random Access memory, serves the purpose of a

temporary memory. this memory is used to store important data that the

computer needs to access quickly, like for example a document that is being

edited or your clipboard.

Data is stored in RAM using a system of addresses and registers. Each register

holds a certain amount of data, typically 8 bits, and is assigned a unique address.

You can think of a register like a box, where you can store a number between 0

and 255, and the address is like a label with a number written on it.

When the computer needs to access or modify data in the RAM, it first sends the

address of the desired register through the bus, which consists of several pins

labelled A0 to A3 on this diagram. Next, it sends a command to either write new

data to the register or read the data stored in the register. This command is sent

through the CS and WE pin, which stand for Chip Select and Write Enable,

respectively.

When the RAM receives a Read operation, it retrieves and outputs the data

stored at the specified address through the output pins O1 to O4.

On the other hand, if the RAM receives a Write operation, the computer needs to

provide the data to be written to the input pins D1 to D4 along with the target

address. The RAM then replaces the existing data in the register at that address

with the provided data.

MASANAS AMER, Jan TraPe 4C3 2022-2023

The 5 main components of RAM are the Address decoder, Decoder Driver,

Memory Cell array, Data Buffer and Output Buffer.

ADDRESS DECODER

The Address decoder decodes a binary

output so that one wire corresponds to

one address.

For example, 00 in binary (=0 decimal)

corresponds to output 0, 01 (=1 decimal)

to output 1, 10 (=2 decimal) to the third

and so on.

These outputs are then sent to the

memory cell array, where the actual data

is stored and processed.

This example uses a 2-bit Address

decoder for the sake of simplicity, while

most modern computers use 32 bits

(allowing around 4 billion addresses and

with 1 byte per address is 4GB of RAM,

MASANAS AMER, Jan TraPe 4C3 2022-2023

instead of the 4 bytes in this example).

Input 1 Input 2 Output 0 Output 1 Output 2 Output 3

0 0 1 0 0 0

0 1 0 1 0 0

1 0 0 0 1 0

1 1 0 0 0 1

MASANAS AMER, Jan TraPe 4C3 2022-2023

MEMORY CELL ARRAY, DATA BUFFER & OUTPUT

BUFFER

The memory cell array is the main bulk of RAM. It is where all the data is stored

and consists of an array of so called “cells”, which hold 1 bit of data each.

A single cell contains 3 main parts: SR-Latch, the SR controller, and the Output

controller.

The SR-Latch (Blue region on diagram) stores the bit of information (more on this

circuit in “List of reoccurring circuits”).

The SR controller (Purple region on diagram) controls the state of the SR-Latch. It

only SETs it if:

 Select = 1 (the Address decoder has selected it)

 Mode = 0 (mode 0 is Write & mode 1 is Read)

 Data in = 1

The SR controller only RESETs if:

 Select = 1

 Mode = 0

 Data in = 0

The Output controller (Orange region on diagram) controls when the data should

be outputted to Data Out. It does this using an AND gate and a Controlled buffer.

It only opens the controlled buffer if both Select and Mode (Mode 1 is read) are 1,

outputting the data.

MASANAS AMER, Jan TraPe 4C3 2022-2023

An 8 GB RAM’s cell array holds about 64.000.000.000 of these cells, but in the

following example, the array will be just 4 by 4

The following diagram contains the data buffer (purple circuit), the Output buffer

(yellow circuit) and the cell array (the rest of the diagram). The green circuits are

connected to each individual Output on the address decoder.

When the Output buffer is on (WE = 0 & CS = 1), it sets the “Mode” pin on each

individual cell to 1, meaning they enter “Read” mode. It also outputs the selected

cells’ “Data out” pins to the output bus.

When one of the addresses (Dark green cables) is selected, all the connected

cells’ “Select” Inputs are set to 1.

When the Input buffer is on (WE = 0 & CS = 0), it sets the selected cells’ “Data”

pins to whatever is in the input bus.

MASANAS AMER, Jan TraPe 4C3 2022-2023

As such, the CPU can access the RAM at any time extremely efficiently by just

inputting the address in binary to the address decoder, the operation

(Read/Write) and (if it is writing,) the Input.

MASANAS AMER, Jan TraPe 4C3 2022-2023

CPU

CPUs (Central processing Unit) in their early days consisted of 3 core

components: The Arithmetic and logic unit (ALU) and the Control unit (CU)

Memory/Storage Unit. The memory Unit is in our case the RAM (Explained in

RAM chapter). It is technically a part of the CPU but most regard it as a

component of its own.

More modern CPUs have many more components, but for the sake of simplicity, I

will explain how their simpler ancestors worked.

CPUs work in Cycles. Each cycle completes exactly one instruction. A cycle

consists of these 4 phases:

1. Fetch: The CPU goes to fetch the next instruction and data from the RAM

(Stored in OPCODE).

2. Decode: The CU decodes the OPCODE into instructions the ALU can

understand.

3. Execute: The ALU executes the desired action.

4. Store: Stores the outputted data back into the RAM

Now comes the question: What is OPCODE?

OPCODE

OPCODE is the most basic, low-down level of programming. Each instruction

consists of (in the case of 8-bit computers) only 8 bits of information (more for

more capable computers).

MASANAS AMER, Jan TraPe 4C3 2022-2023

This is how a standard 8-bit OPCODE instruction is structured.

A line of OPCODE contains 1 word of OPCODE as well as 1 word of OPERAND.

The OPERAND is where all the addresses are stored for A: the address of where

to store the result, B: the address of the 1st argument of the operation and C: the

address of the 2nd argument of the operation.

CONTROL UNIT (CU)

The Control unit is responsible for the 1st, 2nd and 4th phases. It serves as a sort of

gateway between the rest of the computer and the CPU. It is responsible for

taking the OPCODE from the RAM and decoding it for the other components.

This process is extremely extensive and will not be showcased in this TraPe, as it

could alone constitute a whole

ARITHMETIC AND LOGIC UNIT (ALU)

The ALU is the core of the processor. It does every arithmetic and logical

Calculation on the computer, getting orders from the CU and sending the result

back to it.

MASANAS AMER, Jan TraPe 4C3 2022-2023

Here is a boiled down 8-bit ALU. Keep in mind, 8-bit Computers do not have

multiplication or division functions integrated in the OPCODE, and as such

neither does the ALU. In more modern Computers, the ALU also contains a

multiplier and divider. Multiplication is of course still possible, but it takes much

more processing power.

MASANAS AMER, Jan TraPe 4C3 2022-2023

GPU

Modern GPUs are renowned for their immense processing power and are as

such used for crypto mining and other processor-heavy tasks, acting as a

powered-up CPU. This however was not always the case, GPUs used to only

serve to turn data from the CPU into data the screen can understand.

Nowadays, we mostly use HDMI cables, but let us look at how older GPUS

handled VGA cables.

VGA cables use 15 Pins. Most these are not needed for displaying images. Many

pins are used for communication of information such as the resolution of the

screen and are as such optional. As such, we only need 5 of these pins (pins 1, 2,

3, 13 and 14).

Name Dir Description

1 RED Red Video (75 ohm, 0.7 V p-p)

2 GREEN Green Video (75 ohm, 0.7 V p-p)

3 BLUE Blue Video (75 ohm, 0.7 V p-p)

4 RES Reserved

5 GND Ground

6 RGND Red Ground

7 GGND Green Ground

8 BGND Blue Ground

MASANAS AMER, Jan TraPe 4C3 2022-2023

9 +5V +5 VDC

10 SGND Sync Ground

11 ID0 Monitor ID Bit 0 (optional)

12 SDA DDC Serial Data Line

13 HSYNC or CSYNC Horizontal Sync (or Composite Sync)

14 VSYNC Vertical Sync

15 SCL DDC Data Clock Line

Monitors, when using VGA Inputs draw the image starting from the top left

corner and working its way down, left to right and top to bottom. The timing

needed to write these are the same as they were with CRT monitors, around 100

years ago (first commercialised in 1922).

CRT monitors used to work by using an electron gun, with electromagnets

aiming the electrons. The timing of that beam created a baseline for timing, which

is still used with VGA cables.

As the beam took time to move from the right to the left of the monitor, the

original inventors had to leave a certain amount of time after each row of pixels

that was drawn on the screen, as well as a buffer on the left and right of the

screen (Front and Back Porch). For the screen to understand when the beam of

electrons should be moved back to the left or top of the screen, we use the

VSYNC (Vertical Sync) and HSYNC (Horizontal Sync) pins. This timing was

maintained for VGA signals, even though there was no good reason anymore to

do so apart from backwards compatibility.

What is important here, is that for each resolution, the timing must be correct, so

it does not try to write data outside the screen or offset it in any way.

All the timings are conveniently listed online here:

http://www.tinyvga.com/vga-timing

MASANAS AMER, Jan TraPe 4C3 2022-2023

MASANAS AMER, Jan TraPe 4C3 2022-2023

Here are the timings we will be using:

SVGA Signal 800 x 600 @ 60 Hz timing

We will be using a 40 MHz Clock hooked up to an

11-bit binary counter (11 bits is the minimum to be

able to reach 1056, which is the size of one line).

We will use AND gates to make a short pulse every

time a certain threshold is crossed (E.G: 800 pixels

to know when to stop drawing). By hooking these

up to SR-Latches, we can define when the drawing

zone begins and ends (0-800) as well as when the

HSync should be 1 (840-968) and when it should

reset to 0 (1056). This is what’s happening on the

left side of the circuit. We can copy a similar thing

to the right, except we change the timing.

By feeding the count to a RAM or other storage

device as an address, every pixel would have its

own address which can be accessed when needed

by the GPU. We only enable the RAM’s Output

when we are both in the vertical and horizontal

display time. Trying to display pixels when not in

display time could damage CRT monitors, but

newer monitors just stop trying to display anything instead.

This is what a complete (yet very bad) GPU looks like:

MASANAS AMER, Jan TraPe 4C3 2022-2023

MASANAS AMER, Jan TraPe 4C3 2022-2023

Explanations of specific circuits

Data Storage

SR-Latch:

A pulse on ”SET” sets the output to 1 and a pulse on ”RESET” sets it to 0. The

Output stays until another pulse comes in.

SET is pressed -> OUTPUT is on SET is released -> OUTPUT stays on

RESET is pressed -> OUTPUT is off RESET is released -> OUTPUT stays off

MASANAS AMER, Jan TraPe 4C3 2022-2023

D-Flip Flop:

The D-Flip Flop stores the Data input (D) if CLK is on, and outputs the stored

state to the Output (Q).

Inputs Outputs

D (Data) CLK (Clock) Q

1 1 1

0 1 0

1 0 Q (Previous output)

0 0 Q (Previous output)

MASANAS AMER, Jan TraPe 4C3 2022-2023

Binary counter

Binary counters serve the simple purpose of adding 1 to a number each time it

receives a pulse. This could be done with a binary adder but would be extremely

inefficient and expensive. Instead, we count using this:

Every time the Input goes from 1 to 0, B0 toggles, every time B0 goes from 1 to 0,

B1 toggles, and so on.

Notice how each frequency is exactly half of the previous frequency. The circuits

responsible for this are called Frequency dividers. By chaining these up, we have

a circuit that counts from 0000 to 1111, adding 1 every time the clock ticks.

MASANAS AMER, Jan TraPe 4C3 2022-2023

Frequency Divider

Frequency Dividers can be made with any flip flop latch (we will use a D-Flip

flop). It is Important that the CLK Input is falling edge. Logisim Evolution does

not allow you to make your own falling edge D-Flip Flop from scratch, so we will

be using the built-in circuit.

By hooking up !Q to D, we set Q to !Q every time the clock switches from ON to

OFF, effectively outputting the Input frequency divided by 2 as the output.

MASANAS AMER, Jan TraPe 4C3 2022-2023

Arithmetic Operations

Adder

Adders add 2 binary numbers. Here is how computers add numbers:

Input A 1 0 1 1 + 0 1 1 1 +

Input B

Carry

0 0

1

1 0 = 0

1

0

1

1

1

1 =

Output 1 1 0 1 1 0 1 0

The computer calculates the numbers from the right to the left, as we do too.

For each outputted number:

If there is only 1 positive input (Input A, B and Carry), the output is 1.

If there are 2 positive inputs, the output is 0 and we carry a 1 to the next digit.

If there are 3 positive inputs, the output is 1 and we carry a 1 to the next digit.

Using these rules, we can deduce:

The output is 1 if there is an odd number of inputs. (Otherwise, it is 0)

The carry is 1 if there are more than 2 positive inputs. (Otherwise, it is 0)

MASANAS AMER, Jan TraPe 4C3 2022-2023

Here is the truth table for this design (Known as the 1-bit full adder)

Inputs Outputs

A B Carry In Carry Out Sum

0 0 0 0 0

0 0 1 0 1

0 1 0 0 1

0 1 1 1 0

1 0 0 0 1

1 0 1 1 0

1 1 0 1 0

1 1 1 1 1

When arranged so that the Carry Out connects to the next 1-bit full adder’s Carry

In, it looks like this:

MASANAS AMER, Jan TraPe 4C3 2022-2023

This design can be expanded infinitely relatively easily if needed.

Subtracter (Specialized)

You can use a similar method to addition for subtraction

Input A 1 0 1 1 - 1 1 1 0 -

Input B

Borrow

0 0 1 0 = 0 01 11 1 =

Output 1 0 0 1 1 0 1 1

MASANAS AMER, Jan TraPe 4C3 2022-2023

The 1-bit full subtractor consists of 2 partial subtractors (Orange zones), which

each subtract just one pair of numbers (A and Bin, and A’ and B).

Here is the truth table for a partial subtractor:

Inputs Outputs

Minuend (A) Subtrahend

(B)

Difference

(D)

Borrow out

(Bout)

0 0 0 0

0 1 1 1

1 0 1 0

1 1 0 0

The 1st partial subtractor subtracts Bin from A (A-Bin) and the 2nd one subtracts

the B from output of the 1st one ([A-Bin]-B). The truth table for the 1-bit full

subtractor is as follows:

Inputs Outputs

A B Borrow In

(Bin)

Borrow out

(Bout)

Difference

(D)

MASANAS AMER, Jan TraPe 4C3 2022-2023

0 0 0 0 0

0 0 1 1 1

0 1 0 1 1

0 1 1 1 0

1 0 0 0 1

1 0 1 0 0

1 1 0 0 0

1 1 1 1 1

When arranged so that the Borrow Out connects to the next 1-bit full

subtractor’s Borrow In, it looks like this:

Much like the adder, this one can also be expanded infinitely relatively easily

MASANAS AMER, Jan TraPe 4C3 2022-2023

Subtractor (Generalized)

Binary subtraction can also be fulfilled in an indirect way by using an adder

instead of making a whole new circuit. It works a bit like this:

Let us say A = 1011 and B = 0010

 1 +

Input A 1 0 1 0 - Input A 1 0 1 0 +

Input B

Borrow

0 0 01 1 = Input B̅

carry

 1

1

11 1 0 =

Output 1 0 0 1 Output 1 1 0 0 1

As you can see, by inverting Input B, using a 4-bit adder, adding 1 and ignoring

the overflow, we get the same result as if we had used a subtractor.

This is useful so we do not have to use 2 separate circuits for addition and

subtraction.

By adding a SU toggle to our adder, we get an adder/subtracter circuit.

MASANAS AMER, Jan TraPe 4C3 2022-2023

When SU (subtract mode) = 1, Input B is inversed, and the carry in of the 1st 1-bit

full adder is set to 1, effectively adding 1 to the whole thing.

MASANAS AMER, Jan TraPe 4C3 2022-2023

Multiplier

Broken down to its main components, We can apply the same principle

for

Decimal Multiplication looks like this: Binary Multiplication:

Input A 2 3 * Input A 1 0 0 1 *

Input B 9 5 = Input B 1 0 1 1 =

Partial

Product 1
 27 15 + Partial

Product 1
 1 0 0 1 +

Partial

Product 2

 18 10 = Partial

Product 2

 1 0 0 1 +

Output 2 1 8 5 Partial

Product 3

 0 0 0 0 +

 Partial

Product 4

1 0 0 =

 Output 1 0 1 1 0 1 1

If we look at it from a computer logic standpoint, it would be this:

Input A A3 A2 A1 A0 *

Input B B3 B2 B1 B0 =

Partial Product 1 0 0 0 A0*B3 A0*B2 A0*B1 A0*B0 +

Partial Product 2 0 0 A1*B3 A1*B2 A1*B1 A1*B0 0 +

Partial Product 3 0 A2*B3 A2*B2 A2*B1 A2*B0 0 0 +

Partial Product 4 A3*B3 A3*B2 A3*B1 A3*B0 0 0 0 =

Output Partial Product 1 + Partial Product 2 + Partial product 3 + Partial Product 4

MASANAS AMER, Jan TraPe 4C3 2022-2023

If we compile this to a diagram:

Note, that we use 5-bit Adders to account for overflow, so calculations of higher

numbers do not mess up. You could also instead use 4-bit Adders and connect

the Cout to where the 5-bit adder’s last output goes.

MASANAS AMER, Jan TraPe 4C3 2022-2023

Sources:

Digital Computer Electronics (Albert Paul Malvino)

https://eater.net

https://eater.net/VGA

https://eater.net/8bit/

https://eater.net/8bit/alu

http://www.tinyvga.com/vga-timing/800x600@60Hz

http://www.tinyvga.com/vga-timing

https://pinoutguide.com/Video/VGAVesaDdc_pinout.shtml

Original Research (Trial and error with Logisim Evolution) (Source of almost

every diagram)

https://eater.net/
https://eater.net/VGA
http://www.tinyvga.com/vga-timing/800x600@60Hz
http://www.tinyvga.com/vga-timing
https://pinoutguide.com/Video/VGAVesaDdc_pinout.shtml

	Table of contents
	Introduction
	RAM (Random Access Memory)
	MEMORY CELL ARRAY, DATA BUFFER & OUTPUT BUFFER

	CPU
	OPCODE
	CONTROL UNIT (CU)
	ARITHMETIC AND LOGIC UNIT (ALU)

	GPU
	Explanations of specific circuits
	Data Storage
	Binary counter
	Frequency Divider

	Arithmetic Operations
	Adder
	Subtracter (Specialized)
	Subtractor (Generalized)
	Multiplier

	Sources:

